
An Indirect Encryption using Compression with
Random bit stuffing

Dr. M. Ramesh1 , Dr. B. Hemanth Kumar2, Prof. M. Surendra Prasad Babu9,

1, 2. Associate Professor, Dept., of Information Technology,
RVR & JC College of Engineering, Guntur, A.P. India

3. Professor , Dept., of CS & SE,
AU college of Engineering, Andhra University, Visakhapatnam, A.P, India.

Abstract: Traditional compression schemes in specific work
on diminishing size of given data and do not concentrate on
other aspects. Wide variety of compression methods are in use
and differ in their compression ratios, speed and complexity
involved in doing compression. Some techniques are suitable
for huge data and others are suitable for small amount of
data. But we present a compression technique that is
straightforward to realize, implement and feasible in all
conditions. Unlike traditional compression methods, besides
reducing data size, it also acts as an encryption tool to encrypt
data. The tool also provides authentication for the encrypted
data.The proposed method is applicable to data of any size
which consume no additional memory. Encryption and
Decryption of this method are very simplified and require no
complex mathematical operations. Our experiments disclose
that, it achieves reasonable compression and performs good
encryption in quick time bounds.

Keywords: Compression, Encoding, Decoding and Symmetric
key

1. INTRODUCTION

Data compression is a mechanism used to bring down size
of given data from size X to size Y where Y < X. Two
basic categories of compression techniques [1] exist;
lossless and lossy. In lossless compression original message
can be retained completely from compressed one, but in
lossy compression some pieces of data get lost in the
process. In this paper we have bring in first category of
compression which results in no loss of data. Prior to this
work, various compression algorithms were designed to
reduce data size. Huffman Coding [2] reduces size by
giving assigning shorter prefix codes to highest occurring
symbol and longest prefix codes to least occurring symbol.
Dynamic Huffman Coding [3] attempts to resolve problems
in [2] but in this, sender and receiver must construct tree
dynamically which is a time consuming process.
Run Length Encoding [4] identifies repeating symbols and
places (symbol,N) pairs where N is number of times
symbol repeated. Arithmetic Coding [5] does compression
by doing mathematical calculations. High Speed Search
and Memory Efficient Huffman Coding [6] increases
searching speed of symbols and mitigate memory size.
Efficient Test Pattern Compression Techniques based on
Complementary Huffman Coding [7] gives better
compression than [2][3] by identifying complement values.
An Authenticated Bit Shifting and Stuffing Methodology
[8] reduces size of data by reading eight symbols and

inserting bits of eighth symbol into preceding seven bytes.
But these techniques do only compression and not else.
Each of them has constraints, works on certain patterns of
text and is time consuming in implementation. But our
proposed method is suited to all sizes of data, feasible in
implementation and majorly it provides security beyond
compression.
Remaining sections of the paper proceed in this fashion.
Section 2 gives overview of proposed approach. A simple
example is demonstrated in section 3 and reverse approach
of this technique is given in section 4. Section 5 shows
authentication results are given in section 6 and finally
conclusions are presented in section 7.

2. PROPOSED METHOD

The proposed method adopts the compression mechanism
in [8] and refines it to act as encryption. It is a symmetric
key encryption mechanism that starts with creating blocks
of size eight bytes in given text in a sequential fashion. It
tries to reduce the block size from eight to seven bytes by
embedding eighth byte into first seven bytes. This is
possible because, if we consider ASCII characters, each use
only 7 bits instead of 8; hence MSB of each character gets
wasted. We use this bit to store an additional bit from other
characters.
while (not-end-of File)
{
 read eight bytes from File say B1 to B8
 for(x = 7 to 1)
 {

 c = B8[x] // read from MSB-1 to LSB
 if(c == 0)
 y = get 1’s location randomly in B[8-x]
 else
 y = get 0’s location randomly in B[8-x]
 if(y==MSB)

B[8-x][y] = c
 else
 {

 B[8-x][MSB] = Bx[y];
 B[8-x][y] = c;

 }
 sub~key = get 3 bit value of y
 write sub~key to key file

 }
 Write B1 to B7 bytes to output file.

}
Algorithm 1: Compression and Encryption

M. Ramesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2142-2144

www.ijcsit.com 2142

In [8] additional characters are always stored in MSB bits
which give regularity. But in our method, storing in MSB is
not fixed and we select locations out of 8 in a random
fashion. Randomly selected location becomes a sub key
and is stored in key file. To avoid monopoly, we try to
place 0 in the locations of 1 and place 1 in the locations of
0. Then previous value of selected location is moved to
MSB of the corresponding character. This process is
repeated for all the blocks resulted. It drastically changes
values of blocks and reduces the blocks sizes from 8 to 7 by
doing two things (compression and encryption) at same
time. Since we store 7 bits of eighth character into 8
random locations of first seven characters in a block, we
need 3 bits key for every character. Hence for a block we
require 21 bits as a sub key and all the sub keys for all the
blocks are recorded in a key file which is sent to other side.
The proposed scheme algorithm is self explanatory and
presented in Algorithm 1. At the end of algorithm, output
file contains both compressed and encrypted data.

3. DECRYPTION AND DECOMPRESSION
The process of getting original message is given in
algorithm 2. It reads seven bytes from the compressed file
(also encrypted) to form a block. In each block, it picks a
bit out of eight possible locations and does necessary
exchanges and complementation’s based on sub keys in
key file. After this, every block yields an eighth byte that
is hidden in first seven bytes. This process is repeated for
the remaining blocks and finally actual message is
revealed.

while (not-end-of File)
{
 read 7 bytes from File say B1 to B7
 for(x = 1 to 7)
 {
 sub~key = read 3 bit value from key file
 y = get decimal value of sub~key
 if (y==MSB)
 {
 B8[8-x] = Bx[y];
 complement B8[8-x];
 }
 else
 {
 B8[8-x] = Bx[y];
 Bx[y] = Bx[MSB];
 }
 }
}

Algorithm 2: Decompression and Decryption

4. ILLUSTRATIVE EXAMPLE
This section demonstrates the process with a simple
example. Let us consider the message “MEDICINE”.
Treating them as an eight bytes belonging to a block, the
procedure of compression and encryption process with
results is shown in table 1.
 First column of the table indicates bytes presented in the
given text. Second and third columns present ASCII values
and binary values of corresponding bytes. According to
algorithm, in every block eighth byte is embedded into first

seven bytes of the block in random locations. Therefore
fourth column specifies which bit of E byte used for
embedding process. The location where E bit is stored

in a byte is selected randomly and this random value
becomes sub key which is given in fifth column. Once bits
are embedded in corresponding bytes, byte values gets
changed whose resulting binary and ASCII values are
presented in last two columns of the table. After completion
of the process, E gets embedded into first seven bytes
which reduces the block size from eight to seven. This
mechanism is continued for all the remaining blocks.

5. AUTHENTICATION
A 4 bit polynomial is generated dynamically and this is
applied on encrypted data for authentication. This
polynomial performs modulo 2 division operation on
encrypted data. For every four characters of encrypted data
the modulo division gets a three bit remainder. In
decryption this remainder is act as an authenticated key for
the four characters.

Table 1: Result of Compression and Encryption Process

6. RESULTS
The plain text is compressed and encrypted. Authentication
is provided for this encrypted data by using four bit
dynamic polynomial. Figure:1 shows the actual plain text
message. The compressed and encrypted message is shown
in the figure :2. Figure 3 shows the authenticated encrypted
data.

Byte ASCII Binary
E
bit subkey

Resulting
Binary ASCII

M 77 01001101 1 101 01101101 109

E 69 01000101 0 010 11000001 193

D 68 01000100 0 010 11000000 192

I 73 01001001 0 011 11000001 193

C 67 01000011 1 100 01010011 83

I 73 01001001 0 110 10001001 137

N 78 01001110 1 101 01101110 110

E 69 01000101

Steganography is the art of covered, or
hidden writing. The purpose of
steganography is covert communication - to
hide the existence of a message from a third
party. The system deal with security of data
during transmission. Commonly used
technology is cryptography. This proposed
system deals with implementing security-
using steganography. In this technology, the
end user identifies an image which is going
to act as the carrier of data.

Figure 1: Original message

M. Ramesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2142-2144

www.ijcsit.com 2143

7. CONCLUSION
We have presented a new compression method that is
unambiguous, easy to implement, understand and require
no generation of prefix codes or coding tables like other
technique. It is applicable to data of all the sizes and for
any text it gives 12.5% compression. It also secures data by
encrypting data beside to compressing data. Since every
block of eight bytes generate 21-bit key, total size of the
key file would be (FileSize/8)*21. If the original file is not
in multiples of 8 bytes we do some padding in last byte.
With this scheme, key file occupies 32.8125% of original
file size. To break this indirect encryption, a cryptanalyst
need to strive for 221×B trials where B is the number of
blocks resulted from original message of size eight bytes.

REFERENCES

[1] “Introduction to Data Compression”, Khalid Sayhood, Morgan
Kaufmann, 1996.

[2] “A Method for the Construction of Minimum – Redundancy
codes”, Proceedings of the IRE, sept 1952, 1098 – 1102.

[3] http://en.wikipedia.org/wiki/DynamicHuffmanCoding
[4] http://en.wikipedia.org/wiki/Information_Theory
[5] http://en.wikipedia.org/Arithmetic_Coding
[6] “Memory Efficient and High Speed Search Huffman Coding”,

Reza Hashemian, IEEE Transactions on Communications, vol
43, no 10, oct 1995, 2576-2581.

[7] “Efficient Test Pattern Compression Techniques based on
Complementary Huffman Coding”, Shyue-Kung Lu et al, IEEE
2009.

[8] “An Authenticated Bit Shifting and Stuffing (BSS) Methodology
for Data Security”, B. Ravi Kumar et al, Computer Engineering
and Intelligent Systems, vol 2, no 3, 94 – 104.

Óôågaîïòáphù é tèe áò oæ cïöred,
ïrèéädåî ritinç.
Ôhå ðrðïse ï óôågáîçraðhù s ãoöåò coímõîãaôéon
 ôo èée tèå åistenãeïæ a íåóáçå æòm a
ôèéd ðárôy
Tèå ùsôem äal wiôhóecõòéô of dáô
duriîgôòanóíéséoî.
Ãomíïîì uóed ôãhnïìïç is ãòùôogòáðè®
 Ôèé pòopïóä óùsôå äåaìó itè iíðåíåntéî
Š såãõiôù-uóég óôeçáoçòápèy Én ôèé
tåãhîïogù, Šèe eîä såò iäåôifieó n imaçe÷èicè é
gïiîç ï acô á Š thå áòòéeò f datá.

Figure 2: Encrypted message

㽻�侘羗�쭏蝃䬍

͍ޡ ��佅紳錇띏�䤆⍣阫䍏禗缅✫䨧䭋

罵猻ꅋޕ ꁎ 楔佳

가荇伈̙Ɲ靏댯罽筫�箙㾗�䔫齻荿䶐紇�㽻ޅ

ԝ��筭使ণy͑ 罱́ꍿ ꅋ �位

�䀯ܭ 鮣罉�琛͍܉缴鼏樯ㅿ�笼 鉯使ꅇ 缄蔏

␃ͽꏏ 羕ꁂ 汔齻

�紮欃ꌯ ͉ལ ꍇ䬥 롋��䶘� 鑏ՙ㌃䭾

⌃ધ獏鍋䮯霏㶣使魯罰罳鵋ᡎũ罰歿硫굋朇絶ܡ
鰯獻�侠缿穧�䦛伂쾧ᦗཿ㮓籽睭葇䙿¡罔薓䰇

齏荻罸駏Ԫݍꌯ 侚ལՂꍋ
�羝䵫䀇��羆䭷皣饋倄䭭꽏ݍ 굻콯綤㼃顏㭏

�侚㮗౿콻蝃䤈瘃͍ ݉◌䝏管�ꈫ 㭻罿米ŭ챧͍䐯䵔✇

⡳��羜 䴣�㍋䥎甃鴇㭏欋筈䝏�䵿䌇笟筏Ĺ

Figure 3: Encrypted message with key

M. Ramesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2142-2144

www.ijcsit.com 2144

